人工ニューラルネットワーク。パート3

ニューラルネットワークトレーニング

最も単純なニューラルネットワークの開発に関する記事のこの部分では、ニューラルネットワークをトレーニングする方法を学習します。





ニューラルネットワークをトレーニングして、多数のパターンを見つける問題を解決します。簡単にするために、これらは数字の0と1になります。





ニューラルネットワークをトレーニングするには、問題の条件と解決策が必要です。問題は1つの問題を解決する必要があります。





トレーニングデータは次のようになります





状態





回答





1





0





1





0





0





0





0





1





0





この問題は、ニューラルネットワークを最初から作成することに関するほとんどすべての記事で見ることができます。





トレーニングの結果、ニューラルネットワークは条件と応答の間の論理的な接続を見つけます。





この問題の解決策は、最初に入力した番号です。





ニューラルネットワークによって解決される問題の条件として、





状態





回答





1





1





1





ニューラルネットワークトレーニングは、損失を減らすことです。





損失が少ないほど、結果はより正確になります。





複雑な式を避けるために、トレーニングの原理については詳しく説明しません。多かれ少なかれ明確なコードを提供し、ニューラルネットワークのトレーニングに必要な機能について説明します。





トレーニングには、シグモイドの導関数が必要です。





ウィキペディアで導関数が何であるかを確認できます。シグモイドの導関数は次のようになります。





f`(x)= \ frac {e ^ {-x}} {(1 + e ^ {-x})^ 2} = f(x)*(1-f(x))

Pythonの実装は次のようになります。





def deriv_sig(x):
    return sig(x) * (1 - sig(x))
      
      



このコードをMath.pyファイルに書きましょう





また、トレーニングには2つの定数が必要です。







rate-学習率count_learn-トレーニングの繰り返し回数





count_learn , . rate .





:





rate = 0.1

count_learn = 10000





, 0 count_learn, , .





, :





def learn(self, inputs, answers):
        
        rate = 0.1
        count_learn = 10000

        for o in range(count_learn):
            for inputt, answer in zip(inputs, answers):

                sum_n1 = self.n[0].w[0] * inputt[0] + self.n[0].w[1] * inputt[1] + self.n[0].b
                n1 = sig(sum_n1)

                sum_n2 = self.n[1].w[0] * inputt[0] + self.n[1].w[1] * inputt[1] + self.n[1].b
                n2 = sig(sum_n2)

                sum_n3 = self.n[2].w[0] * n1 + self.n[2].w[1] * n2 + self.n[2].b
                n3 = sig(sum_n3)
                out_res = n3

                err = -2 * (answer - out_res)

                err_rate = rate * err

                deriv_sig_n1 = deriv_sig(sum_n1)
                deriv_sig_n2 = deriv_sig(sum_n2)
                deriv_sig_n3 = deriv_sig(sum_n3)

                self.n[0].w[0] -= err_rate * self.n[2].w[0] * deriv_sig_n3 * inputt[0] * deriv_sig_n1
                self.n[0].w[1] -= err_rate * self.n[2].w[0] * deriv_sig_n3 * inputt[1] * deriv_sig_n1
                self.n[0].b -= err_rate * self.n[2].w[0] * deriv_sig_n3 * deriv_sig_n1

                self.n[1].w[0] -= err_rate * self.n[2].w[1] * deriv_sig_n3 * inputt[0] * deriv_sig_n2
                self.n[1].w[1] -= err_rate * self.n[2].w[1] * deriv_sig_n3 * inputt[1] * deriv_sig_n2
                self.n[1].b -= err_rate * self.n[2].w[1] * deriv_sig_n3 * deriv_sig_n2

                self.n[2].w[0] -= err_rate * n1 * deriv_sig_n3
                self.n[2].w[1] -= err_rate * n2 * deriv_sig_n3
                self.n[2].b -= err_rate * deriv_sig_n3
      
      



NeuronNet.





NeuronNet.py :





from Neuron import *

class NeuronNet:
    def __init__(self):

        self.n = []

        for i in range(3):
            self.n.append(Neuron(2))

    def activate(self, inputs):
        return self.n[2].activate(np.array([self.n[0].activate(inputs), self.n[1].activate(inputs)]))

    def learn(self, inputs, answers):
        
        rate = 0.1
        count_learn = 10000

        for o in range(count_learn):
            for inputt, answer in zip(inputs, answers):

                sum_n1 = self.n[0].w[0] * inputt[0] + self.n[0].w[1] * inputt[1] + self.n[0].b
                n1 = sig(sum_n1)

                sum_n2 = self.n[1].w[0] * inputt[0] + self.n[1].w[1] * inputt[1] + self.n[1].b
                n2 = sig(sum_n2)

                sum_n3 = self.n[2].w[0] * n1 + self.n[2].w[1] * n2 + self.n[2].b
                n3 = sig(sum_n3)
                out_res = n3

                err = -2 * (answer - out_res)

                err_rate = rate * err

                deriv_sig_n1 = deriv_sig(sum_n1)
                deriv_sig_n2 = deriv_sig(sum_n2)
                deriv_sig_n3 = deriv_sig(sum_n3)

                self.n[0].w[0] -= err_rate * self.n[2].w[0] * deriv_sig_n3 * inputt[0] * deriv_sig_n1
                self.n[0].w[1] -= err_rate * self.n[2].w[0] * deriv_sig_n3 * inputt[1] * deriv_sig_n1
                self.n[0].b -= err_rate * self.n[2].w[0] * deriv_sig_n3 * deriv_sig_n1

                self.n[1].w[0] -= err_rate * self.n[2].w[1] * deriv_sig_n3 * inputt[0] * deriv_sig_n2
                self.n[1].w[1] -= err_rate * self.n[2].w[1] * deriv_sig_n3 * inputt[1] * deriv_sig_n2
                self.n[1].b -= err_rate * self.n[2].w[1] * deriv_sig_n3 * deriv_sig_n2

                self.n[2].w[0] -= err_rate * n1 * deriv_sig_n3
                self.n[2].w[1] -= err_rate * n2 * deriv_sig_n3
                self.n[2].b -= err_rate * deriv_sig_n3

      
      



Math.py :





import numpy as np

def sig(x):
    return 1 / (1 + np.exp(-x)) 

def deriv_sig(x):
    return sig(x) * (1 - sig(x))
    
      
      



.





main.py :





learn_inputs = np.array([[1, 0], [0, 0], [0, 1]])
learn_answers = np.array([1, 0, 0])
      
      



:





net.learn(learn_inputs, learn_answers)
      
      



:





x = np.array([1, 1])

if (net.activate(x) < 0.5):
    print("0")
else:
    print("1")
      
      



main.py :





import numpy as np

from NeuronNet import *

net = NeuronNet()

learn_inputs = np.array([[1, 0], [0, 0], [0, 1]])
learn_answers = np.array([1, 0, 0])

net.learn(learn_inputs, learn_answers)

x = np.array([1, 1])

if (net.activate(x) < 0.5):
    print("0")
else:
    print("1")

      
      



:





python main.py
      
      







,













1





1





1

















0





1





0









.

























.





github.





, .








All Articles