写真の顔をエイジングしたり、髪型を変更したり、笑顔にしたりするには、トレーニングを受けたGANモデルの個別のレイヤーに含まれるセマンティクスを学習する必要があります。生成的敵対的ネットワークに関する最近の研究では、レイヤーごとに合成画像のセマンティクスが異なることが示されています。色の原因となるもの、テクスチャの原因となるものなどがあります。
. , . :
StyleCLIP
Adobe , StyleGAN, .
CLIP, StyleGAN. , . , ArcFace. , : , , .
ReStyle
GAN- . , . , . , .
EigenGAN
, . - , , . , , , - , .
LatentCLR
GAN, . StyleGAN2 BigGAN.
Geometry-Free View Synthesis
, . , , , . . , .
, . , «» . , . , 3D- , .
Articulated Animation
Snap , , — , , . , , . , . .
VideoGPT
. — VQ-VAE, self-attention. GPT- .
, , .
MiVOS
. . . , .
, : , , . , , Adobe Premier.
DINO
, FAIR .
. , , .
, . , . ImageNet, — , : , , . , , .
PAWS, , .
ML :
Compositional Perturbation Autoencoder (CPA)
, . , .
FAIR . , , , ..
Transferable Visual Words
, . . . « », . .
:
以上です。ご清聴ありがとうございました。来月お会いしましょう!